Bedienungsanleitung LASNIX Infrarot-Abschwächer Modelle 110, 111,102, 204

1. HANDHABUNG. LASNIX Abschwächer arbeiten nach dem Prinzip der Lichtbeugung. Die aktiven optischen Elemente bestehen aus sehr dünnen perforierten Metallfolien.

VORSICHT:

Die dünnen Metallfolien sind sehr empfindlich. Sie dürfen nicht berührt, angeblasen oder gespült werden.

- 2. EINBAU. Der Einfall der Strahlung kann von jedem der beiden Enden her erfolgen. Eine Fehljustierung -innerhalb der Apertur- wirkt sich nicht auf die Abschwächung aus.
- 3. Die WASSERKÜHLUNG ist anzuschließen, wenn die Infrarotleistung 30 W c.w. (oder quasi-c.w.) überschreitet. Der Wasserdurchfluß von ca. 0.5 l/min. muß spätestens dann in Betrieb gesetzt werden, wenn eines der Abschwächungselemente länger als 5 s der maximalen Strahlungsleistung ausgesetzt ist.
- 4. BETRIEBSWEISE. Die Abschwächung wird durch Einschwenken eines oder mehrerer Elemente eingestellt. Sie ergibt sich, in Dezibel (db) gerechnet, als Summe der Abschwächung der einzelnen Elemente.
- 5. EINHEITEN. Die folgende Tabelle soll die Umrechnung von Abschwächungseinheiten erleichtern. In der Formel $T = 10^{-A/10} = 1/F$ bedeuten T die Transmission der Infrarotleistung, A die Abschwächung in Dezibel und F der Dämpfungsfaktor:

A(db)	T(%)	F	A(db)	T(%)	F
0	100	1.00	6	25.1	3.98
0.01	99.97	1.0023	7	20.0	5.01
0.1	97.7	1.023	8	15.9	6.31
1	79.4	1.26	9	12.6	7.94
2	63.1	1.59	10	10	10
3	50.1	2.00	20	1.0	100
4	39.8	2.51	30	0.1	1000
5	31.6	3.16	40	0.01	10000

6. SCHÄDIGUNGSSCHWELLE.

Die Grenzbelastung ist 200 W (c.w. oder quasi-c.w.) bzw. 20 J/cm² für alle Modelle mit folgenden Ausnahmen: 300 W bzw. 20 J/cm² für Modell 204, 20 W bzw. 1 J/cm² für die Modelle 110 und 111, 70 W bzw. 20 J/cm² für Modell 102-L.

VORSICHT: Die angegebenen Leistungsrenzen gelten für unfokussierte Strahlung, deren effektiver Querschnitt mindestens die halbe Aperturfläche ausfüllt. DieserBedingung genügt beispielsweise eine Grundmode mit $1/e^2$ Breite von ca. 2/3 der Apertur oder größer.

ENGE STRAHLUNGSBÜNDEL:

Die Grenzbelastung der Leistung (c.w. oder quasi-c.w.) verringert sich *proportional* zum Durchmesser des Strahlungsbündels.

Dies sei an einem Beispiel verdeutlicht: Modell 102 ist mit CO_2 Laserstrahlung von 200 W belastbar, wenn der Modendurchmesser 12 mm beträgt. Die Grenze erniedrigt sich aber auf 100 W bei einem Modendurchmesser von nur 6 mm.

KURZE EINZELPULSE:

Der Grenzwert der Einzelpulsenergiedichte ist 20 J/cm² (Ausnahme 1 J/cm² für die Modelle 110 und 111). Er gilt aber nur dann, wenn die Leistungsdichte die Plasmadurchbruchschwelle nicht überschreitet (ca. 500 MW/cm²).

HOHE PULSWIEDERHOLRATE;

Die angegebene quasi-c.w. Belastungsgrenze gilt gleichermaßen für kontinuierlich gepulste Strahlung, sofern der einzelne Impuls den Grenzwert für die Pulsenergiedichte eines Einzelpulses nicht überschreitet.

So kann Modell 102 mit ${\rm CO_2}$ Laserpulsen von 1 J bei einer Wiederholrate von 200 Hz belastet werden.

7. GEFAHR NACH BESCHÄDIGUNG.

Im ersten Stadium einer Beschädigung wird die Metallfolie sichtbar verformt. Dies wirkt sich zwar kaum auf die Abschwächungseigenschaften des Elements aus; es kann aber dazu führen, daß eine Strahlungsreflexion nahezu rückwärts auf den Laser zu auftritt.