Instructions LASNIX Infrared Neutral Density Filter Models GF 01, GF 02

1. HANDLING. LASNIX infrared neutral density filters operate on light diffraction. The active optical element consists of a very thin, structured metal membrane.

WARNING:

The metal membrane is mechanically fragile. Do not touch or blow air. Do not use cleaning liquids.

- 2. INSTALLATION. Either end of the filter can serve for radiation input. The transmittance does not depend on the angular alignment within the clear aperture.
- 3. WATER COOLING. Connect cooling water when you apply infrared power exceeding $10\,\mathrm{W}$ c.w. (or quasi-c.w.). The actual flow of water, at a rate of roughly 0.5 liter/min., is necessary only when the filter element is exposed to the beam (of maximal power) for longer than $5\,\mathrm{s}$.
- 4. UNITS. The following table may facilitate the interconversion of units. We have $T = 10^{-A/10} = 1/F$, where T is the power transmittance, A is the attenuation in decibels (db), and F is the attenuation factor:

A(db)	T(%)	F	A	(db)	T(%)	F
0	100	1.00		6	25.1	3.98
0.01	99.97	1.0023		7	20.0	5.01
0.1	97.7	1.023		8	15.9	6.31
1	79.4	1.26		9	12.6	7.94
2	63.1	1.59		10	10	10
3	50.1	2.00		20	1.0	100
4	39.8	2.51		30	0.1	1000
5	31.6	3.16		40	0.01	10000

5. POWER HANDLING.

The maximum power (c.w. or quasi-c.w.) is 200 W, and the maximum pulse energy is 20 J/cm^2 .

WARNING: The specified power handling limit applies to relatively wide beams filling at least half the aperture area in a smooth manner. This is the case, for example, with a near fundamental mode having a $1/e^2$ diameter of at least about 2/3 of the aperture diameter.

USING NARROW BEAMS:

For narrow beams the power limit scales down <u>linearly</u> with the beam diameter.

This important point may be illustrated by an example: while model GF 01 accommodates a 200 W $\rm CO_2$ laser beam with a mode diameter of 7 mm, this limit reduces to 100 W when the mode diameter is reduced to 3.5 mm.

USING SINGLE PULSES:

The specified limit of pulse energy density of 20 J/cm² applies to single short pulses provided the intensity does not exceed the plasma breakdown threshold. The latter is near 500 MW/cm².

USING REPETITIVE PULSES:

The specified quasi-c.w. power limit applies to repetitively pulsed beams, with the added requirement that each pulse is within the specified pulse energy density limit.

Thus for example, model GF 01 accommodates at a repetition rate of 200 pps pulse energies up to 1 J.

HAZARD FROM DAMAGED ELEMENT.

In a first stage of permanent damage the metal membane becomes distorted. This change does not appreciably alter the attenuation properties of the element. However, it is possible that in this situation part of the input radiation is reflected out of the attenuator, in a near-backward direction towards the laser.